July 24, 2019

Causality Research in AI – How Does My Car Make Decisions?

Category: Artificial Intelligence,Security Intelligence — Raffael Marty @ 2:19 pm

Before even diving into the topic of Causality Research, I need to clarify my use of the term #AI. I am getting sloppy in my definitions and am using AI like everyone else is using it, as a synonym for analytics. In the following, I’ll even use it as a synonym for supervised machine learning. Excuse my sloppiness …

Causality Research is a topic that has emerged from the shortcomings of supervised machine learning (SML) approaches. You train an algorithm with training data and it learns certain properties of that data to make decisions. For some problems that works really well and we don’t even care about what exactly the algorithm has learned. But in certain cases, we really would like to know what the system just learned. Your self-driving car, for example. Wouldn’t it be nice if we actually knew how the car makes decisions? Not just for our own peace of mind, but also to enable verifyability and testing.

Here are some thoughts about what is happening in the area of causality for AI:

  • This topic is drawing attention because people are having their blinders on when defining what AI is. AI is more than supervised machine learning, and a number of the algorithms in the field, like belief networks, are beautifully explainable.
  • We need to get away from using specific algorithms as the focal point of our approaches. We need to look at the problem itself and determine what the right solution to the problem is. Some of the very old methods like belief networks (I sound like a broken record) are fabulous and have deep explainability. In the grand scheme of things, only few problems require supervised machine learning. 
  • We are finding ourselves in a world where some people believe that data can explain everything. It cannot. History is not a predictor of the future. Even in experimental physics, we are getting to our limits and have to start understanding the fundamentals to get to explainability. We need to build systems that help experts encode their knowledge and augments human cognition by automating tasks that machines are good at.

The recent Cylance faux pas is a great example why supervised machine learning and AI can be really really dangerous. And it brings up a different topic that we need to start exploring more, which is how we measure the efficacy or precision of AI algorithms. How do we assess the things a given AI or machine learning approach misses and what are the things it classifies wrong? How does one compute these metrics for AI algorithms? How do we determine whether one algorithm is better than another. For example, the algorithm that drives your car. How do you know how good it is? Does a software update make it better? How much? That’s a huge problem in AI and ‘causality research’ might be able to help develop methods to quantify efficacy.

No Comments »

No comments yet.

RSS feed for comments on this post. | TrackBack URI

Leave a comment

XHTML ( You can use these tags): <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> .